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Dear Members of the Siting Board, 

This letter is submitted to express strong opposition to the proposed Wood Duck Solar, LLC project in 

Barren County, Kentucky. This project, which seeks a certificate of construction for an approximately 

100-megawatt solar generating facil ity on over 2,300 acres of land, raises serious concerns across 

multiple fronts. 

The specific scale, location, and potential impacts are highly detrimental to our community and its 

irreplaceable natural resources. We urge the Siting Board to deny the application based upon the 

following key arguments, which are supported by public filings, local testimony, and the criteria for 

project evaluation outlined in KRS 278.710(1). 

1. Significant Negative Impact on Scenic Surroundings and Property Values 

The proposed industrial-scale solar facility, spanning thousands of acres, will irrevocably alter the 

pastoral and scenic landscape of Barren County. The installation of vast arrays of solar panels and 

associated infrastructure will introduce an industrial presence into a rural, agricultural community, 

creating a significant and la.sting visual blight. This directly contradicts the board's duty to consider the 

"impact of the facility on scenic surroundings, property values, (and] the pattern and type of 

development of adjacent property" as stated in KRS 278.710(1)(a). Furthermore, my submission at the 

July 15, 2025 public hearing in this case specifically contested the developer's property value analysis, 

arguing that it failed to adequately account for the project's scale and the resulting negative impact on 



adjacent land values. I cited current, independent research by Nino Abashidze of the University of 
Wyoming which was issued on May 29, 2025 that found an approximately 8.7% reduction in value for 

homes within one mile of a solar farm. She also found reduced housing market liquidity and stated that 

her methodology was more accurate than other common types of analysis. Attached Is the full 

document for your review. Keep in mind that the Kirkland report utilized by the developer was bought 

and paid for by Wood Duck/Geenex and therefore lacks independence. The negative effect on the 

aesthetic character of the area is a primary concern for local residents, who have clearly stated that 

their quality of life and investments in their homes and land are at risk. This scattered-site development 

is totally inappropriate for the proposed area. How will property owners be compensated for the loss in 

value of their properties if this project gains your approval? 

2. Irreversible Loss of Prime Agricultural Land 

The proposed location for the Wood Duck Solar project encompasses over 2,300 acres of what is 

currently productive farmland. This land is a vital economic and cultural resource for Barren County. 

Converting this acreage to an industrial solar facility represents a permanent loss of agricultural 

capacity. This conversion will have a long-term economic impact on the local agricultural sector and the 

food supply chain. Current research from Columbia University, New York states "The USDA figures show 

that one agricultural related job is lost for every 9 acres taken out of production". Approximately 250 

agriculture jobs will be lost to the Wood Duck Solar project contrasted with an estimated 3 permanent 

Jobs created by the project. How will those who lose their livelihood because of the loss of farmland be 

made whole? 

3. Threat to Mammoth Cave National Park and Karst Aquifer System 

Perhaps the most critical environmental concern is the potential impact of the project on the unique 

and fragile ecosystem of Mammoth Cave National Park, a UNESCO World Heritage Site. The karst 

geology of the area means that any chemical spills or runoff from the solar panels, battery storage, or 

construction activities could quickly enter the groundwater and contaminate the cave's aquifer. This 

poses a direct threat to the federally endangered Kentucky Cave Shrimp and over 160 other species of 

aquatic wildlife that depend on the pristine waters of the cave system. It is undisputed that the solar 

panels proposed to be used by Wood Duck contain lead and the manufacturer warns that "a release of, 

and exposure to, lead can take place when (i) when the different components of the solar modules are 

disassembled, in particular for recycling purposes, and (ii) in instances of fire. Lead may damage fertility 

or the unborn child, causes damage to organs through prolonged or repeated exposure, is very toxic to 

aquatic life with long lasting effects, may cause cancer, is very toxic to aquatic life, and may cause harm 

to breast-fed children". Yes, the warning about toxicity to aquatic life is repeated in the same paragraph 

by the manufacturer. It is also undisputed that most of the project site has 4 inch water lines that are 

insufficient to support a hydrant or provide sufficient volume to suppress a solar fire. Barren County's 

own regulations required that commercial properties be served by at least a 6 inch line. This farmland 

becomes a commercial project if Wood Duck gains approval and 6 inch water lines are mandated. In 

reviewing the recent communications between Wood Duck and Mammoth Cave National Park, I was 

struck by the realization that the most serious, over-riding concern was not addressed at all. How is 



Mammoth cave protected from a release of lead, or other contaminants such as chemicals or glass 

shards, in the event of a fire caused by lightning, arson, equipment malfunction, or another type of 

incident? The answer is that it is not protected and this tremendous resource would suffer 

unfathomable, unrecoverable harm. The risk is too great and I ask, once again, that you deny the 

project and protect t he community and its irreplaceable treasures. 

4. Inadequate Decommissioning Plan and Financial Responsiblllty 

A major point of concern for residents is what happens to the land once the solar facil ity reaches the 

end of its useful life. The filings in this case have not provided sufficient guarantees that a 

comprehensive and fully funded decommissioning plan is in place. Without a robust and independently 

verified financial guarantee, the financial burden could fall on local taxpayers and landowners. The lack 

of a clear, legally binding, and well-funded decommissioning plan is a significant risk that the Siting 

Board must address before granting a certificate. Will you prevent Wood Duck from controlling the 

process of establishing the amount and type of the decommissioning security? 

5. Failure to Respect Local Community Concerns and Lack of Zoning 

The developer has proceeded with this project despite widespread local opposition, which was clearly 

demonstrated at the public hearing held on July 15, 2025 and is further evidenced by the volume of 

comment letters to you in opposition to the project. The absence of comprehensive land-use 

restrictions or zoning in Barren County has been exploited by the developer, who has circumvented a 

process that would have prioritized community input and local concerns. Barren County Planning and 

Zoning failed to adequately vet the project or seek public input before rubber stamping Wood Duck's 

requests. I attended both public information meetings and they were a farce. Wood Duck uti lized a 

"divide and conquer'' strategy by having their representatives engage each attendee individually so that 

attendees couldn't ascertain the answers being given to other questions. There were no group 

information presentations or Q&A sessions. All we heard were non-answers and that our concerns were 

being heard. No substantive information was shared. Wood Duck's outreach to the community has 

been inadequate and ineffective, but did serve to hold back community opposition until Paula Pedigo 

and others were able to discover the complicity of the judge-executive and Wood Duck in stifling 

community dissent. This has created a situation where a state-level decision is being made on a project 

that profoundly affects a local community that feels unheard and unprotected. The Siting Board has a 

responsibility to consider the public comments and the strong sentiment of the local community, which 

has raised valid questions that deserve answers. The project's failure to secure local support 

demonstrates a disregard for the principles of responsible community development. This project is now 

tainted by its failure to adequately inform the citizenry about the details of its plans. Are citizen's rights 

to be trampled by approval of this project? You have the power to say no. 

6. Impact on Amish Neighbors 

Included in the public comments from the July 15, 2025 public hearing and later submissions are letters 

and petitions signed by 141 Amish community members that are negatively impacted by the proposed 

project. In the writings they detail how profoundly their way of life will be adversely affected by Wood 



Duck's solar farm. It is incumbent on all involved to respect the Amish way of life and help to protect 

their culture. Will you stop this infringement by Wood Duck? 

7. Impact on Wildlife and the Indiana Bat 

Just today an article appeared on The Cool Down with the headline "Scientists raise alarm over 

unexpected wildlife behavior around solar farms: 'Leading them off course"'. The article states that 

rapid expansion of solar farms" has brought unexpected consequences for migrating birds and bats that 

could threaten biodiversity if left unaddressed. Researchers at Murdoch University have called for 

w ildlife-friendly solar farm designs after discovering that solar farms could confuse birds and bats during 

migration. The researchers also found that the panels may attract insects, creating artificial feeding 

grounds that can disrupt natural hunting and foraging behavior. This disruption can increase the risk of 

bird collisions and shih wildlife behavior in unintended way. As solar capacity grows, land requirements 

expand significantly. This can reduce available habitat for wildlife, degrade soil health, and threaten 

nearby pollinators, which are essential to crop production, biodiversity, and ecosystem resi lience. 

Fencing is another concern. While designed to protect solar infrastructure, it can block animal migration 

routes or t rap small wildlife". A copy of this article is attached. The Indiana bat is a protected species 

that inhabits the project area. The Amish neighbors are dependent on ven ison as part of their food 

supply. Will you protect w ildlife by denying approval to Wood Duck? 

In conclusion, the proposed Wood Duck Solar project is an ill-suited development for its location. The 

potential harm to the local economy, environment, and community significantly outweighs any 

perceived benefits. In this letter are seven reasons to deny approval to Wood Duck. Any single reason is 

sufficient to justify disapproval, but the seven reasons taken as a w hole provide overwhelming 

justificat ion and we respectfully request that the Kentucky State Board on Electric Generation and 

Transmission Siting deny the application for a certificate of construction for the Wood Duck Solar, LLC 

project. 

Sincerely, 

cA,._jJ1~ 
David L. Hawkins 

enclosures 
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L Unseen consequences will need 10 be addressed 

Solar energy is crucial in our transition away from pollution-heavy power, but its 
rapid expansion has brought unexpected consequences for migrating birds and 
bats that could threaten biodiversity if left unaddressed. 

What's happening? 

Researchers at Murdoch University have called for wildlife-friendly solar farm 
designs after discovering that solar panel farms could confuse birds and bats 
during migration. 

Women's Tee, Short­
Sleeve Crewneck Washe ... 
LLBean 

In a new report published in Renewable and Sustainable Energy Reviews, 
ecologists explained that solar panels often reflect light in a way that mimics 

bodies of water. Known as polarized light pollution, it can mislead birds into 

landing or veering off course. 

"The reflective glare from solar panels mimics the appearance of water bodies, 
confusing migrating birds and leading them off course,• professor Trish Fleming, 
lead author of the report, said. 



The researchers also found that the panels may attract insects, creating artificial 

feeding grounds that can disrupt natural hunting and foraging behavior. This 
disruption can increase the risk of bird collisions and shift wildlife behavior in 

unintended ways. 

Why is this important? 

While solar panels offer clear environmental benefits, unique surprises are bound 

to arise with large-scale land use. 

In 2023, solar panels covered about 0.025% of the Earth's surface. But as solar 

capacity grows, land requirements expand significantly. Generating 1 megawatt, 

which can power 2,000 typical U.K. homes for an hour, usually requires around 2 

to 6 hectares, or about 5 to 15 acres, of land, which can significantly disrupt 

habitats. 

a Related video: 'Wind theft' threatens offshore wind farms and climate goals, 

warn scientists (KameraOne USA) 

This can reduce available habitat for wildlife, degrade soil health, and threaten 

nearby pollinators, which are essential to crop production, biodiversity, and 

ecosystem resilience. 

Fencing is another concern. While designed to protect solar infrastructure, it can 

block animal migration routes or trap small wildlife, especially in desert 

ecosystems. 



What's being done about it? 

Witti any new technology, unseen consequences will need to be addressed; it's a 
natural part of the cycle of development Fortunately, solutions are already being 

tested. 

Do you think solar farms are an eyesore? 

Definitely 

Not at all 

It depends where they are 

I've never seen one 

Click your choice to see results and speak your mind. 

Nano-coating solar panels to reduce polarized light pollution could prevent birds 
from mistaking the technology for bodies of water, Fleming said. "These coatings 
alter the way light is reflected, making the panels less visually disruptive to 
wildlife." 

Women's Pima Cotton 
Tee, Long-Sleeve ... 

LLBean 

Designers can also integrate strategies for fencing, such as including wildlife 

corridors and gaps, while preserving native plants and natural washes to support 
biodiversity on and around solar farms, allowing desert life to continue to thrive. 

As the world moves toward cleaner energy with solar, wind, and more, it's 
essential that we design with biodiversity and ecological awareness in mind. 
Responsible solar development that protects wildlife can ensure this technology 

remains a win for people and the planet. 



The Local Cost of Clean Energy: Evidence from Solar Farm Siting 
and Home Prices 

Nino Abashidze* 

May 29, 2025 

Abstract 

Local opposition to utility-scale solar farms often stems from concerns about declin­
ing nearby home values. This paper quantifies the impact of solar farm construction 
on residential property prices in North Carolina, one of the leading U.S. states for 
utility-scale solar capacity. Using detailed housing transaction data and a hedonic 
difference-in-differences framework, we estimate the causal effect of new solar farm 
operations on neighboring home sale prices. We employ a refined measure of spatial 
exposure-using street-network (road) distance rather than straight-line distance to 
define proximity- to better capture actual visual exposure in treatment assignment. 
Our results indicate that the arrival of a solar farm leads to an approximately 8. 7% 
reduction for homes within one mile relative to similar homes farther away. We also 
find evidence that local housing market activity declines after a solar farm becomes op­
erational: the number of homes sold in the nearby area falls by roughly 6%, suggesting 
reduced housing liquidity in the vicinity of the new solar facility. 

Keywords: solar farms; residential property values; hedonic method; network distance; 
renewable siting. 
JEL Codes: Q42; Q51; R31; C21 
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1 Introduction 

Solar energy expansion in the United States is widely supported, 1 yet utility-scale solar 

projects frequently encounter resistance from local communities. Although solar farms con­

tribute to climate goals and rural economic development, nearby residents often worry that 

these large ground-mounted installations could degrade scenic views, alter rural character of 

their communities, and depress property values (Johnson, 2012; Cignoli, 2012). These con­

cerns have manifested in court cases and zoning hearings, where neighbors describe visible 

solar arrays as an undesirable local disamenity. 

Despite rapid growth in solar deployment, relatively few empirical studies have quantified 

the local spillover effects of utility-scale solar on residential real estate. The existing evidence 

is mixed and contradictory. For example, Gaur and Lang {2023), using repeat-sales data 

in Massachusetts and Rhode Island, find modest home value declines of roughly 1.5-3.6% 

within 0.6 miles of new solar farms. In contrast, Hao and Michaud (2024) document small 

positive effects (0.5-2.0%) in parts of the Midwest, where solar facilities may be less visible 

or better integrated with local land use. Maddison et al. {2022), in a study of England and 

Wales, find that homes located within 750 meters of large ( >5 MW) solar farms experienced 

price declines of approximately 5.4%. Guignet and Hellerstein (2023), using a nationwide 

hedonic framework, find no consistent solar-specific effect after accounting for neighborhood 

and locational features. 2•3 

This paper contributes new evidence to the emerging literature by estimating the causal 

effect of solar farm development on nearby residential property values in North Carolina, 

1Kennedy (2016), "Americans strongly favor expanding solar power to help address costs and environ­
mental concerns," Pew Research Center: http://pewrsr.ch/2dK9KKQ. 

2 Abashidze and Taylor (2023) examine the effect of utility-scale solar systems on nearby agricultural land 
values in North Carolina. They find no direct positive or negative spillover effects but suggest that solar 
farm construction may indirectly influence land values by signaling the land's suitability for future solar 
development, particularly in proximity to electric transmission lines. 

3By contrast, a robust body of research has shown that rooftop solar installations tend to increase 
home values. Households with installed photovoltaic (PV) systems often receive price premiums upon sale, 
reflecting both energy savings and buyer preferences for environmentally friendly features. See, for example, 
Qiu et al. (2017); Hoen et al. (2017); Dastrup et al. {2012); Adomatis and Hoen (2016); and Wee (2016) . 
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one of the leading U.S. states for utility-scale solar capacity. Using a difference-in-differences 

framework and detailed transaction data from Zillow Research (2017),4 we compare price 

effects for homes located near solar farms to those slightly farther away, before and after 

each project becomes operational. We build on recent literature by using street-network 

(rather than straight-line) distance to define exposure. This approach may better capture 

how residents actually experience the visual externality of solar farms, particularly in settings 

where visibility is shaped by local siting ordinances. For example, solar ordinances in North 

Carolina often mandate vegetative buffers between farms and homes, but not along public 

roads (Lovelady, 2014). This implies that road-facing exposure may be the primary channel 

through which residents encounter the disamenity, especially during daily commutes. 

We find that homes located within one mile of a new solar farm experience sale price de­

clines of approximately 8- 12%, with the largest effects concentrated within 0.5 miles. These 

statistically and economically significant effects are robust across specifications. The esti­

mated effects are substantially larger than those reported in a multi-state study by Lawrence 

Berkeley National Laboratory (Laboratory, 2023), which found an average 1.5% price reduc­

tion within 0.5 miles of solar farms and significant effects in only a subset of states, including 

North Carolina. A likely explanation is that the LBNL analysis relies on broad distance 

bands and Euclidean proximity, which may attenuate localized variation. By contrast, our 

approach leverages high-resolution street-network distance and parcel-level data to capture 

exposure more precisely. In addition to price effects, we also document a roughly 6% drop 

in home sales volume following solar farm construction, which may reflect reduced housing 

demand or market activity in affected neighborhoods. Finally, we explore heterogeneity in 

treatment effects based on prior land cover and find no statistically significant differences 

between sites converted from forest versus grassland. 

Together, these results contribute to a growing body of evidence on the localized impacts 
4 Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More in­

formation on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are 
those of the author(s) and do not reflect the position of Zillow Group. 
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of renewable energy infrastructure. In particular, this study adds to the literature by ( 1) 

introducing a network-based exposure measure grounded in road accessibility; (2) using 

highly detailed spatial and temporal data on both home sales and solar installations in a 

high-growth solar market; (3) providing evidence from the Southeastern U.S., a region largely 

absent from prior research; and (4) examining outcomes beyond price - specifically, the 

effect on transaction frequency. These findings offer new insight into how solar development 

reshapes local housing markets and can inform land-use policy, community planning, and 

solar siting strategies. 

The remainder of the paper is organized as follows. Section 2 describes the data, in­

cluding the novel road-distance expo.sure metric. Section 3 outlines the empirical strategy 

and identification assumptions. Section 4 presents the baseline results and robustness checks 

(e.g., alternative distance measures, sample windows, and farm characteristics). Section 5 

concludes with a discussion of policy implications. 

2 Data 

To conduct our analysis, we integrate two primary datasets- residential property trans­

actions from Zillow's ZTRAX database and detailed solar farm location data from the North 

Carolina Clean Energy Technology Center. Below, we describe each data source, the proce­

dures used to link them spatially, and our sample selection criteria. 

2.1 Housing Transactions 

Our primary housing market data come from Zillow's Transaction and Assessment 

Dataset (ZTRAX)5
, which provides comprehensive geocoded records of single-family home 

sales across the United States. For our analysis, we extract all arms-length transactions 

5Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More in­
formation on accessing the data can be found at http://www.zillow.com/ztrax. The results and opiniona are 
those of the author(s) and do not reflect the position of Zillow Group. 
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recorded in North Carolina from 1997 through 2017 and restrict the sample to sales that 

include a consistent set of property characteristics (e.g., lot size, living area, number of 

bedrooms, and bathrooms) and have non-missing geographic coordinates for the property 

address. Transactions with prices below $20,000 or above the 99th percentile of the price 

distribution are excluded from the analysis {Haninger et al., 2017; Taylor et al., 2016), as 

these prices likely do not represent market values. Short-term resales (sales occurring within 

two years of a previous sale) are also removed from the analysis, as these may reflect specu­

lative behavior or atypical market conditions rather than stable valuations (Haninger et al., 

2017). 

To capture local socioeconomic context, demographic information from the American 

Community Survey (ACS) is integrated into the analysis. Specifically, each home sale is 

linked to block-group-level demographics, including median household income, racial and 

ethnic composition, and educational attainment levels. These variables serve as essential 

neighborhood controls in the subsequent analyses. 

2.2 Solar Farms 

Information on solar farm locations is sourced from the North Carolina Clean En­

ergy Technology Center, which maintains a comprehensive inventory of solar installations 

statewide. Each project record includes location coordinates, generation capacity, and con­

firmed operational start dates through 2017. 

To precisely delineate the spatial boundaries of these solar installations, we manually 

digitize panel footprints using high-resolution satellite imagery Google Earth and Google 

Maps. This digitization ensures accurate exposure measurement by capturing actual physical 

extents rather than relying on approximations such as parcel centroids. Our final dataset 

includes verified spatial polygons for 428 utility-scale solar farms, representing the near­

universe of large-scale solar development in North Carolina over the study period. 

To further characterize solar installations, we overlay each digitized polygon onto the 
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2006 National Land Cover Database (NLCD). This allows us to classify the pre-solar land 

cover of each installation site, focusing primarily on whether the land was previously forest or 

grassland. These distinctions enable heterogeneity analyses that test whether property-value 

impacts vary based on the original landscape type converted to solar use. 

2.3 Sample Construction J 

To focus on localized housing market effects, we•restrict the sample to homes located 

within two Euclidean miles of at least one solar farm. This initial spatial boundary is 

consistent with prior studies assessing the localized effects of environmental disamenities 

and energy infrastructure (e.g., Gaur and Lang (2023); Haninger et al. (2017); Hoen et al. 

(2015); Currie et al. (2015), which find that housing price effects tend to dissipate beyond 

this range. Limiting the analysis to homes in close proximity ensures that the control group 

is drawn from the same general neighborhood context as the treated homes, minimizing 

confounding differences in broader housing market conditions. To ensure the estimated 

effects are not influenced by the presence of multiple nearby facilities, we restrict the sample 

to homes located within two miles of only one solar farm. 

In addition to structural characteristics from ZTRAX and neighborhood demographics 

from ACS, we include several locational controls to account for spatial amenities and dis­

amenities that could independently influence property values. These include distances to 

major roads, bodies of water, and public open spaces, which we calculate using GIS-based 

overlays with state geographic data layers. 

Table 1 provides descriptive statistics for our final sample of 15,939 home transactions 

across 249 distinct solar farm areas, highlighting the typical housing characteristics and 

contextual attributes of the analyzed homes. The average home in the sample is 32 years 

old and is sold for $153,000 (inflation-adjusted to 2017 dollars) with about 3 bedrooms and 

2 bathrooms, and the mean living area is 1,670 square feet on a lot of 0.9 acres. The nearby 

solar farms vary widely in scale, from small 1 MW projects to large installations of 80 MW 
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capacity, with an average capacity of about 5-6 MW. Given typical land use intensity for 

utility-scale solar, a project with 5-6 megawatts of capacity generally occupies between 25 

and 30 acres. Most of these installations (~ 60%) are built on previously agricultural open 

space, while the remainder are sited on forested land. 

3 Empirical Strategy 

The non-experimental nature of our data presents challenges in identifying the causal 

effect of solar farm construction on residential property values. In particular, solar farms are 

not randomly sited across space: their locations may reflect unobserved local characteristics, 

such as land suitability, zoning, or development potential, that also influence nearby home 

prices. For example, if solar farms tend to be built in less affluent or more rural areas where 

property values are already lower, a naive comparison of house prices near versus far from 

solar farms may overstate the disamenity effect. This is because underlying spatial and 

economic conditions, not the solar farm itself, could drive observed price differences. 

To address these identification concerns and mitigate bias from unobserved heterogeneity, 

we adopt a difference-in-differences (DiD) research design with rich fixed effects. Specifically, 

we include solar farm fixed effects to control for all time-invariant factors specific to the area 

surrounding each installation, such as baseline amenity levels, land quality, or proximity 

to infrastructure. We also incorporate county-by-year fixed effects to capture local housing 

market trends and policy shocks that vary across time and geography. These controls allow 

us to isolate the change in house prices associated with the solar farm construction from 

broader trends or persistent spatial differences. 

Our identification strategy compares housing price trends before and after a solar farm 

becomes operational for homes located in close proximity to the facility relative to homes 

located slightly farther away within the same local area. This strategy relies on a parallel 

trends assumption: that is, in the absence of solar farm development, treated and control 
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homes would have followed similar price trajectories. Formally, we estimate variations of the 

following hedonic DiD regression model: 

where ln(~1C8) is the natural log of the sale price of house i, sold in year t, located in 

county c, and whose nearest solar farm is s. The indicator TreatiC8 equals one if house i 

is located near solar farm s (regardless of whether the project is yet to be built), and itC8 

equals one if the sale occurred after the farm became operational. The coefficient of interest, 

/33 , captures the difference-in-differences estimate: the change in log sale price for homes 

near a solar farm after construction, relative to price changes for homes farther away during 

the same period. A negative /33 implies that the solar farm's introduction reduced nearby 

property values, beyond broader market trends captured by the control group. 

The vectors X11c and Zitc control for housing characteristics and neighborhood demo­

graphics, respectively. We include solar farm fixed effects, µ 8 , to account for all time-invariant 

differences across project sites. County-by-year fixed effects, Ate, control for local housing 

market shocks or policy shifts that vary across counties and time, ensuring treated and con­

trol homes are compared under common regional trends. We cluster standard errors at the 

solar farm level to account for spatial correlation in the error term among homes linked 

to the same installation. We also explore alternative fixed-effects structures to assess the 

sensitivity of the results to the specification of temporal controls. 

3.1 Defining Treatment and Control Groups 

In line with prior disamenity studies (e.g., Linden and Rockoff (2008); Muehlenbachs 

et al. (2015)), we define treatment and control areas based on proximity to the solar farm. 

Homes within a certain distance of a solar installation are considered "treated" ( exposed to 

the solar farm's externalities), while homes farther away serve as the control group. Because 
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the appropriate distance cutoff is not known a priori, we determine it empirically rather than 

assume an arbitrary radius. Following the approach of Haninger et al. (2017), we first regress 

the (log) sale price on housing attributes, solar farm fixed effects, and county-by-year fixed 

effects to obtain price residuals purged of observable factors. We then use a nonparametric 

local linear regression to examine how these residuals differ before vs. after the solar farm's 

construction as a function of distance from the farm (Cameron and Trivedi, 2005; Haninger 

et al., 2017)6 . The intuition is that if the solar farm impacts property values up to a certain 

distance, we should observe a divergence between pre- and post-construction price residuals 

for homes nearer than that threshold, but no difference for homes farther away. 

The local polynomial analysis indicates that any divergence in pre- versus post-treatment 

housing prices disappears beyond roughly one mile from the solar farm (Figure 1) . In other 

words, solar farm construction has no statistically discernible effect on home values beyond 

approximately one mile. Based on this evidence, we define the treatment group as homes 

located within one mile of the nearest solar farm, and the control group as homes located 

beyond one mile. It is important to note that distance is measured along the street network 

(i.e., driving distance on roads) rather than straight-line Euclidean distance. This choice is 

motivated by the nature of visual externalities: solar farms are typically buffered from direct 

view of adjacent properties by vegetation ( as encouraged by local ordinances - see Lovelady 

(2014)), but they remain visible to observers traveling along nearby roads. A network­

distance measure thus may better capture actual exposure to the installation (Taylor, 2017) . 

As a robustness check, we also implement a "donut" specification that excludes transactions 

occurring in the 1.0- 1.5 mile range, ensuring that our results are not sensitive to including 

homes near the cutoff threshold. Table 2 summarizes the number of home sales by treatment 

status and time period. 

6 A local linear polynomial estimator minimizes the locally weighted sum of squared residuals. We use the 
Gaussian kernel for weighting and Silverman's rule of thumb (Silverman, 2018) to determine the bandwidth. 
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3.2 Identification Assumptions and Validity 

The DiD strategy relies on the parallel trends assumption. That is, in the absence of 

treatment, housing prices in the treatment group would have followed the same trajectory as 

those in the control group. This identification assumption requires that, after controlling for 

observable differences, any change in the price gap between treated and control homes can be 

attributed to the introduction of the solar farm. Figure 2 provides a graphical check of this 

assumption by plotting the house price residual trends for treatment and control groups over 

time (with time measured relative to the solar farm's operation start date). The two groups 

exhibit statistically indistinguishable price trends in the pre-construction period, consistent 

with parallel trajectories prior to treatment. After the solar farm becomes operational, 

however, the trends diverge: there is no change in the price residuals for control homes, but 

the treated homes experience a pronounced downward shift. This post-treatment divergence 

is significant for roughly the first three years after the solar farm's opening (diminishing by 

the fourth year, as fewer treated homes are sold by that time). 

We further assess identification validity using an event-study approach, which relaxes 

the constant treatment effect assumption. Specifically, we re-estimate the model allowing 

the treatment- control price differential to vary with each year relative to the solar farm's 

introduction (including solar-farm-by-year fixed effects to absorb common shocks). The re­

sulting coefficients (plotted in Figure 3 with 90% confidence intervals) reinforce the evidence 

that treated and control homes followed similar trends prior to solar farm construction. In 

contrast, beginning in the first year after the solar farm becomes operational, a clear negative 

impact on treated home prices emerges and persists in subsequent years. There is a slight 

dip in the relative price of treated homes about one year before the opening ( event time 

-1), which could indicate anticipation effects or disruptions during the construction period. 

These patterns are evidence that pre-treatment trends were parallel. This evidence further 

supports the validity of the research design's identification assumption. 
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4 Results 

4.1 Baseline Results 

Table 3 presents the baseline DiD estimates of equation 1 for the effect of solar farm 

construction on nearby house prices. In all specifications, the treated group is defined as 

homes within one mile by road of a solar farm and the control group as homes beyond one 

mile from that same site. Standard errors are clustered at the solar-farm level to allow for 

spatial correlation among observations tied to the same site, and the results are robust to 

alternative clustering at the county level as well (results not reported). In support of the 

parallel trend assumption, the pre-treatment differences between the groups are negligible. 

The coefficient on the 'I'reat dummy ( which captures any baseline price gap between homes 

that will be treated compared to controls) is small and not significantly different from zero 

in most specifications. 

Our preferred specification (column (12) of Table 3) includes both solar-farm fixed effects 

and county-by-year fixed effects, along with the full set of housing and neighborhood char­

acteristics. The coefficient on the interaction term 'I'reat x Post is negative and statistically 

significant, indicating a substantial decline in home values for properties near the solar farm 

after it becomes operational. In our preferred model, the point estimate implies that the 

opening of a solar farm leads to approximately an 8- 9% reduction in sale price for homes 

within one mile, relative to comparable homes in the control group. 

We explore the price effect at varying proximity thresholds as well. Notably, the price 

impacts are highly localized: homes immediately adjacent to the solar farm experience the 

largest drop in value. For example, when we restrict the treatment group to houses within 

0.5 miles of the solar installation (and exclude those 0.5- 1 mile away), the estimated effect is 

around 12-14% (Table 3, columns 1 - 4). This suggests a distance gradient, where properties 

closest to the solar farm suffer the greatest capitalized losses, while those a bit farther out 

(between half a mile and one mile) see a smaller impact. Beyond one mile, we detect no 
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price changes attributable to the solar farm, consistent with our earlier distance analysis. 

Table 4 reports results for a "donut" approach, where houses located between 1 and 1.5 

miles from solar farms are excluded from the control group to mitigate potential spillover 

effects at intermediate distances. Relative to the baseline estimates reported in Table 3, 

the "donut" method produces treatment effects that are larger in absolute magnitude and 

statistically significant. 

We also examine whether solar farm development may be capitalized into home prices 

prior to project completion. That is, if nearby residents anticipate the disamenity, price 

effects might emerge before the farm becomes operational. To test this, we estimate equa­

tion 1, which introduces a construction-period dummy for homes sold shortly before the solar 

farm's opening. While we lack data on the precise start of construction, we follow (Kikuma 

et al., 2018) and assume either a one- or two-year lead time. Columns (1)- (4) of Table 5 

define the construction period as one year before operation; columns (5)- (8) extend it to two 

years. 

Results show that sales prices in the treatment group are slightly lower than in the 

control group during the year preceding solar farm operation, but these differences are not 

statistically significant. When extending the lead to two years, point estimates remain small 

and imprecise. Across both specifications, the coefficient on the construction-period dummy 

is near zero and insignificant. Overall, we find no consistent evidence of pre-construction 

price effects, suggesting that home values in treated and control areas were comparable in 

the one to two years prior to solar farm operation. Importantly, the main post-treatment 

effect ( Post x Treat) remains stable in both magnitude and significance, confirming that our 

baseline results are not confounded by anticipatory price adjustments. 

4.2 Robustness Checks 

We conduct a series of additional analyses to ensure that our findings are not driven by 

specific modeling choices or data limitations. In each case, the results continue to support 
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the conclusion that solar farms have a localized negative impact on home prices. Below we 

summarize key robustness checks. 

Alternative Distance Metric: We re-estimate the model using Euclidean (straight-line) 

distance to define proximity. Across all specifications, this yields small, inconsistent, and 

statistically insignificant estimates (Appendix Table Al) . This supports the use of street­

network distance as a more accurate proxy for exposure, as it better captures visual access, 

such as from roads. Homes located within 0.5 miles "as the crow flies" but shielded by 

trees or lacking road access show no price response, while homes within 1 mile by road 

exhibit significant value declines. This suggests that visual exposure, not simple geographic 

proximity, drives the observed effect. 

Housing Supply Adjustment: A potential concern is that the housing market may respond 

on the supply side to solar farm construction. For example, if homeowners delay sales or 

developers reduce nearby building activity, prices could be affected over time. To address 

this, we restrict the sample to narrower post-treatment windows. One test includes only 

sales within one year of solar fa.rm opening; others limit the window to two or three years. 

Since housing supply is relatively inelastic in the short run, these tests help isolate demand­

side effects before supply adjustments take hold. Across all windows (Table 6), we continue 

to observe negative treatment effects of 7- 11 %, though significance declines in the one-year 

sample due to limited observations. Importantly, point estimates remain consistent with the 

baseline, suggesting our results are not driven by supply-side shifts. 

Extended Control Radius: Our baseline sample includes home sales within a two-mile Eu­

clidean radius of each solar farm. As a robustness check, I expand this radius to three miles, 

enlarging the pool of potential control observations by including homes located between two 

and three miles away. The treated group remains defined using a one-mile network distance. 

Results (reported in Appendix Table A2) remain qualitatively unchanged: the coefficient on 

Post x Treat is negative and statistically significant, with a magnitude very close to that 

of the two-mile sample estimate. This finding suggests that including more distant control 
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observations (unlikely to be affected by the solar farms) does not dilute the estimated ef­

fect, reinforcing the interpretation of a localized impact. Additionally, it implies that minor 

differences in neighborhood context between the 1- 2 mile and 2- 3 mile rings are already 

captured by the fixed effects. 

4.3 Heterogeneity Analysis 

We next explore whether the impact of solar farms on property values varies with certain 

observable factors related to the solar installations or their surroundings. In particular, we 

examine three dimensions of potential heterogeneity: 

Solar Farm Size: We test whether the effect differs for larger vs. smaller solar farms. 

Many of the installations in our sample are modest in size (~5 MW capacity), and there 

are relatively few home sales near the handful of larger projects (>5 MW). To investigate 

whether larger solar farms drive the primary results, we re-estimate the model after ex­

cluding observations associated with these larger facilities. The estimated treatment effect 

remains unchanged, suggesting that the main findings are primarily driven by numerous 

smaller-scale solar farms (column 1 of Table 7). Consequently, we find no evidence of sys­

tematically different impacts arising from the few larger installations. However, given the 

limited number of observations around larger projects, caution is warranted when drawing 

definitive conclusions regarding size-specific effects. 

Local Electricity Buyer: We consider whether community attitudes or perceived benefits 

might differ based on who purchases the power generated by the solar farm. In North Car­

olina, some solar farms sell electricity to investor-owned utilities (e.g., Duke Energy), while 

others contract with local electric cooperatives or municipal utilities. One might hypothesize 

that if a solar farm's power is sold locally (to a co-op/municipal utility), nearby residents 

could view the project more favorably, perhaps due to targeted outreach by the co-op or 

an expectation of local energy benefits, compared to a scenario where power is sold to a 

large external utility. To test this, we create an indicator for solar farms with local utility 
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off-takers (cerops or municipals) and interact it with the treatment variables. The regression 

results (Table 7, column 2) show no meaningful difference in the price effect: the coefficient 

on the triple interaction ( Treat x Post x Local Utility) is near zero and insignificant. The 

main 'Preat x Post effect in these models remains negative and significant, and its magnitude 

is only slightly smaller than in the baseline. In sum, whether the solar farm's electricity is 

sold to a local cerop/municipality or to a large utility does not appear to change the effect 

on nearby home prices. 

Prior Land Use (Visual Buffering): We investigate whether the land cover of the solar 

farm site before development influences the magnitude of the externality. Converting a 

forested plot into a solar farm could have a different visual/scenic impact than converting an 

open field, for example. On one hand, replacing a forest with rows of solar panels might be 

more jarring (homes lose a wooded view they once had), potentially leading to larger price 

drops. On the other hand, a former forest site might retain surrounding trees as natural 

buffers, whereas a farm built on open grassland relies on newly planted vegetative screens 

that might be less effective initially. To test for differential effects, we classify each solar 

site based on its pre-construction land cover: forest vs. grassland/ agricultural. We then 

interact these indicators with the treatment effect. The results (Table 7, column 3) reveal 

no statistically significant heterogeneity by land cover. The estimated solar farm effect is 

slightly larger in magnitude for the forested sites, but the difference is not significant, the 

interaction terms for Post x 'I'reat x Forest and Post x 'I'reat x Grassland both have 

confidence intervals that include the baseline effect. We conclude that, at least on average, 

the negative effect on home prices does not depend strongly on whether a solar farm is built 

on former forest versus open land. Any visual differences created by these land conversions 

do not translate into a discernible difference in home value responses. 

We also explore other potential dimensions of heterogeneity. For example, comparing 

effects between more densely populated and very rural areas, or examining differences across 

housing value tiers. These exploratory analyses did not reveal clear patterns, partly due to 
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limited statistical power when partitioning the sample. We stratify solar farms by community 

characteristics within two Euclidean miles, including education level, racial composition, eth­

nicity, and average income. Estimates reveal that the treatment effect is fairly homogeneous 

across these different community profiles (Appendix Table A3). 

4.4 Additional Outcomes: Housing Market Activity 

Beyond price effects, we examine whether solar farm openings have any impact on the 

liquidity of the nearby housing market, specifically whether homes transact less frequently 

once a solar farm is in operation. A reduction in sales volume could occur if homeowners are 

reluctant to sell (or buyers are hesitant to purchase) due to the disamenity, resulting in fewer 

transactions in the treated area post-treatment. To investigate this, we follow an approach 

similar to Currie et al. (2015) and analyze annual home sales counts in treated vs. control 

areas. Specifically, we aggregate the number of single-family home sales in each year, for the 

treated area and the control area, for each solar farm. We then re-estimate our DiD model 

with the log of sales count as the dependent variable. 

The results, reported in Table 8, indicate a decline in housing sales activity near the solar 

farms. In our preferred specification with site and county-by-year fixed effects, the Treat x 

Post coefficient corresponds to about a 6% decline in the number of homes sold within one 

mile, relative to the control group, following the solar farm's construction. In other words, 

the volume of transactions in the immediate vicinity drops significantly after the solar farm 

comes online, compared to the trend in slightly more distant areas. This finding is consistent 

across alternative specifications as well. The decline in sales volume suggests a reduction in 

housing market liquidity near the solar farms. 
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5 Conclusion 

We provide new evidence that utility-scale solar farm development can significantly 

depress nearby home values. Using a rigorous difference-in-differences design with high­

resolution housing sales data from North Carolina, we find that homes within roughly one 

mile (by road) of a new solar installation sell for lower prices after the farm becomes op­

erational, relative to comparable homes slightly farther away. The estimated impact is 

substantial: on the order of 8% to 12% price depreciation for properties in close proximity 

(with the largest losses occurring within 0.5 miles). A back-of-the-envelope calculation illus­

trates the economic significance of these findings: the average home within one mile of a solar 

farm experiences a property value reduction of approximately $11,900 following solar farm 

construction. These effects are highly localized, as we detect no significant price changes 

beyond about a one-mile distance after controlling for site fixed effects and neighborhood 

trends. 

Our results show larger local disamenity effects than most prior studies that rely on 

straight-line distance measures. For example, a recent multi-state analysis by Lawrence 

Berkeley National Lab (Laboratory, 2023) reported only a 1.5% average price reduction 

within 0.5 miles of utility-scale solar sites. Likewise, previous U .K. research found modest 

effects limited to large solar farms (> 5 MW) (Maddison et al., 2022), while we document 

substantial price declines even around smaller installations. This contrast highlights the 

importance of accurately measuring proximity using road-network distance and demonstrates 

the sensitivity of impacts to local development context. 

From a policy perspective, our findings indicate that renewable energy infrastructure 

entails meaningful local costs. Homeowners near solar farms experience reduced property 

equity, which may lead to community resistance. Mitigation or compensation strategies, such 

as targeted property tax abatements, direct payments, or community benefit agreements, 

could help address these localized economic impacts. Additionally, enhancing visual buffers 

or setbacks could alleviate aesthetic concerns, potentially reducing negative price effects. 
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Our analysis captures the net property value effect of converting land into solar installa­

tions but cannot fully separate the visual impact of solar panels from losses associated with 

the previous land use, such as open farmland or forest. Future studies should investigate 

whether these effects persist, fade, or intensify over longer periods as communities adapt. Ex­

amining outcomes across different regional or regulatory contexts, such as varying zoning or 

community engagement standards, could further identify factors influencing property value 

impacts. Overall, while utility-scale solar farms offer significant societal benefits, recognizing 

and addressing their localized costs will help policymakers ensure an optimal clean-energy 

transition. 
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Table 1: The summary statistics of the variables used in the analysis. 

Mean SD Min Max 

Structural Characteristics 
real price (2017 dollars) 153,118 85,085 20,000 510,721 
lot size (acres) 0.9 1.6 0.01 19.9 
living area (sq ft) 1,670 638 432 7,692 
age at time of sale 32 27 1 161 
bedrooms 3 1 1 9 
bathrooms 2 1 1 6 
Location Characteristics 
Euclidean distance to solar farm {miles) 1.34 0.46 0.014 2.00 
street network distance to solar farm (miles) 2.45 1.08 0.019 8.85 
capacity of nearest solar farm 4.4 4.1 1 80 
distance to nearest river {miles) 0.27 0.18 0 1.30 
distance to nearest lake (miles) 1.30 1.13 0 9.39 
distance to nearest open space (miles) 9.62 5.71 0 35.26 
distance to nearest major road (miles) 0.64 0.65 0 6.33 
Demographics 
White(%) 66.9 23.1 0 100.0 
Hispanic (%) 9.6 11.0 0 69.1 
Bachelor's degree (%) 15.9 9.7 0 55.2 
Average Income($) 57,951 17,530 16,544 187,967 

Note: The number of sales for the full dataset is 15,939. Zero distance means that the 
house is adjacent to river, lake, open space, and/or major road. Note, several houses are 
located in census block groups with zero white and/or Hispanic population. Furthermore, 
in some block groups no individuals have bachelor or higher education. 
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Table 2: Transaction counts for house sales analysis by distance and time period. 

Euclidean Distance Street Network Distance 
Treatment Status Pre Post Pre Post 

Treated ($ lmile) 2,532 1,186 703 259 
Controls ( > 1 mile) 8,594 3,627 10,423 4,554 
Total 11,126 4,813 11,126 4,813 

Note: Controls(> 1 mile) include house sales located between one and two Euclidean miles 
or between 1 and 8.85 miles by street network. 
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Table 3: The effect of solar farm construction on house values. 

Treated ($ 0.5miles) Treated ((0.5; l ) miles) Treated ($ lmile) 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Treat 0.020 0.066* 0.044 0.061* -0.007 0.000 0.Ql8 -0.011 -0.002 0.016 0.023 0.006 
(0.042) (0.035) (0.035) (0.034) (0.033) (0.035) (0.035) (0.037) (0.026) (0.028) (0.027) (0.029) 

Post 0.118** 0.074 0.074* 0.043** 0.120** 0.077* 0.075* 0.043** 0.120** 0.078* 0.076* 0.049** 
(0.055) (0.046) (0.043) (0.022) (0.055) (0.046) (0.043) (0.021) (0.055) (0.046) (0.043) (0.021) 

Post X Treat -0.110 -0.147** -0.123* -0.125* -0.150*** -0.120** -0.137*** -0.084* -0.135*** -0.122*** -0.127*** -0.087** 
(0.069) (0.074) (0.072) (0.075) (0.053) (0.049) (0.051) (0.049) (0.044) (0.043) (0.044) (0.042) 

Adjusted R2 0.578 0.630 0.612 0.651 0.580 0.630 0.613 0.651 0.581 0.630 0.614 0.651 
Observations 15,264 15,264 15,264 15,264 15,666 15,666 15,666 15,666 15,939 15,939 15,939 15,939 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Solar Farm characteristics Yes Yes Yes 
Solar Fann fixed effects Yes Yes Yes Yes Yes Yes 
County fixed effects Yes Yes Yes 
County by Year fixed effects Yes Yes Yes 
F-testb 0.01 0.93 0.45 1.22 0.22 0.53 1.17 0.66 0.07 0.68 1.08 0.84 
(P-test) 0.92 0.34 0.50 0.27 0.64 0.47 0.28 0.42 0.79 0.41 0.30 0.36 

Note: The estimates are based on equation 1. The sample includes houses located within two-Euclidean miles from the nearest 
solar farm. The treatment and control groups are defined based on street network measure. The dependent variable is the 
natural log of sales price for houses sold between 1997 and 2017. The sample includes 249 solar farms built between 2009 and 
2017. A control group include.s houses located beyond one street network mile of the solar farm. All models include house, 
neighborhood, and location characteristics. F-test for Post + Post x Treat = 0. Finally, robust standard errors clustered by 
solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.l. 
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Table 4: ''Donut" Approach: The effect of solar farm construction on house values. 

Treated (:S 0.5miles) Treated ((0.5; 1 ) miles) Treated (:S lmiles) 
{1) {2) {3) (4) (5) {6) (7) (8) (9) (10) (11) (12) 

Treat 0.014 0.053 0.039 0.047 -0.015 -0.006 0.010 -0.024 -0.011 0.009 0.015 -0.007 
(0.041) {0.033) {0.034) {0.032) (0.035) (0.037) (0.036) (0.039) (0.028) (0.030) {0.028) (0.030) 

Post 0.122** 0.081* 0.083* 0.051** 0.124** 0.083* 0.083* 0.051** 0.124** 0.084* 0.083* 0.055** 
(0.056) (0.048) (0.044) (0.023) (0.057) (0.048) (0.044) (0.022) (0.056) (0.048) (0.044) (0.022) 

Post X Treat -0.132* -0.168** -0.141 ** -0.139* -0.156*** -0.122** -0.142*** -0.079 -0.140*** -0.124*** -0.131*** -0.081* 
(0.069) (0.073) (0.071) (0.076) (0.055) (0.051) (0.053) (0.051) (0.046) (0.044) (0.046) (0.043) 

Adjusted R2 0.576 0.629 0.609 0.651 0.579 0.629 0.610 0.651 0.580 0.629 0.611 0.652 
Observations 13,687 13,687 13,687 13,687 14,072 14,072 14,072 14,072 14,345 14,345 14,345 14,345 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Solar Farm characteristics Yes Yes Yes 
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes 
County fixed effects Yes Yes Yes 
County by Year fixed effects Yes Yes Yes 
F-testb 0.02 1.28 0.67 1.37 0.26 0.39 1.01 0.29 0.09 0.53 0.88 0.35 
(P-test) 0.90 0.26 0.41 0.24 0.61 0.53 0.32 0.59 0.77 0.47 0.35 0.55 

Note: The sample includes houses located within two-Euclidean miles from the nearest solar farm. The treatment and control 
groups are defined based on street network measure. The dependent variable is the natural log of sales price for houses sold 
between 1997 and 2017. The sample includes 249 solar farms built between 2009 and 2017. A control group is defined based 
on a "donut" approach. A control group includes houses located beyond 1.5 street network mile of the solar farm. All models 
include house, neighborhood, and location characteristics. F-test for Post + Post x Tre.at = 0. Finally, robust standard errors 
clustered by solar farm are in parentheses where*** p<0.01, ** p<0.05, * p<0.1. 



Table 5: Construction Period: The effect of solar farm construction on house values. 

Construction = 1 year before the solar farm Construction = 2 years before the solar farm 
operation start date operation start date 

(1) (2) (3) (4) (5) (6) (7) (8) 

Treat (:5 lmile) 0.001 0.027 0.032 0.015 -0.005 0.022 0.027 0.007 
(0.027) {0.031) (0.030) (0.032) (0.030) (0.036) (0.034) (0.036) 

Construction -0.028 -0.020 -0.030* 0.009 0.007 0.006 0.004 0.002 
(0.017) (0.016) (0.015) (0.020) (0.016) (0.014) (0.015) (0.020) 

Post 0.107* 0.065 0.059 0.052** 0.125** 0.082* 0.078* 0.050** 
(0.058) (0.047) (0.043) (0.022) (0.061) (0.047) (0.043) (0.024) 

Construction X Treat -0.020 -0.059 -0.048 -0.049 0.010 -0.020 -0.013 -0.003 
(0.046) (0.050) {0.048) {0.051) (0.039) (0.044) (0.043) (0.045) 

Post X Treat -0.138*** -0.133*** -0.136*** -0.096** -0.132*** -0.128*** -0.131 *** -0.088* 
(0.045) (0.045) (0.046) (0.044) (0.047) (0.048) (0.049) (0.047) 

Adjusted R2 0.581 0.631 0.614 0.651 0.581 0.630 0.614 0.651 
Observations 15,939 15,939 15,939 15,939 15,939 15,939 15,939 15,939 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Solar Farm characteristics Yes Yes 
Solar Farm fixed effects Yes Yes Yes Yes 
County fixed effects Yes Yes 
County by Year fixed effects Yes Yes 

Note: Note: The estimates are based on equation 1. The sample includes houses located within two-Euclidean miles from the 
nearest solar farm. The treatment and control groups are defined based on street network measure. The dependent variable is 
the natural log of sales price for houses sold between 1997 and 2017. In columns (1) to (4), construction period equals one if a 
house is sold one year prior to the solar farm operation start date, while in columns (5) to (8) , construction period equals one is 
a house is sold one or two years prior to solar farm operation start date. All models include house, neighborhood, and location 
characteristics. F-test for Post + Post x Treat = 0. Finally, robust standard errors clustered by solar farm are in parentheses 
where*** p<0.01, ** p<0.05, * p<0.1. 
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Table 6: Robustness Check: Housing Supply Adjustment. 

1 Year Post Construction 2 Yea.rs Post Construction 3 Yea.rs Post Construction 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Treat(~ lmile) -0.015 0.009 0.012 0.006 -0.013 0.010 0.016 0.004 -0.008 0.013 0.020 0.006 
(0.026) (0.029) (0.026) (0.029) (0.025) (0.028) (0.026) (0.029) (0.026) (0.028) (0.027) (0.029) 

Post 0.056 0.051* 0.027 0.056** 0.070* 0.056* 0.037 0.048** 0.114** o.osr 0.074* 0.063*** 
(0.035) (0.029) (0.026) (0.025) (0.039) (0.033) (0.029) (0.021) (0.054) (0.047) (0.044) (0.021) 

Post X Treat -0.096 -0.108* -0.114* -0.079 -0.082* -0.094** -0.090* -0.074 -0.110*** -0.104** -0.109** -0.078* 
(0.064) {0.064) (0.063) (0.065) (0.044) (0.047} (0.046) (0.045) (0.040) (0.041) (0.042) (0.041) 

Adjusted R2 0.597 0.636 0.622 0.655 0.591 0.633 0.618 0.651 0.585 0.630 0.614 0.649 
Observations 12,567 12,567 12,567 12,567 14,292 14,292 14,292 14,292 15,269 15,269 15,269 15,269 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Solar Farm characteristics Yes Yes Yes 
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes 
County fixed effects Yes Yes Yes 
County by Year fixed effects Yes Yes Yes 

Note: The estimates a.re based on equation 1. The sample includes houses located within two-Euclidean miles from the nearest 
solar fa.rm. The treatment and control groups a.re defined based on street network measure. The dependent variable is the 
natural log of sales price for houses sold between 1997 and 2017. Columns (1) to (4), removes sales occurring one year post 
solar fa.rm construction. Columns (5) to (8) removes sales occurring two years post solar farm construction. Columns (9) to 
(12) removes sales occurring three years post solar farm construction. All models include house, neighborhood, and location 
characteristics. Finally, robust standard errors clustered by solar farm are in parentheses where*** p<0.01, ** p<0.05, * p<0.1. 



Table 7: Heterogeneity Analysis 

SF capacity ~ 5 MW Electric Coops Forest and Grass Coverage 
(1) (2) (3) 

Treat ( ~ 1 mile) 0.004 0.012 0.005 
{0.029) (0.019) (0.029) 

Post 0.047** 0.047** 0.049** 
(0.023) (0.023) (0.021) 

Post x Treat -0.081* -0.072* -0.086** 
(0.042) (0.037) (0.042) 

Treat x Coop -0.054 
(0.056) 

Post x Coop 0.028 
(0.051) 

Post x Treat x Coop -0.062 
{0.085) 

Treat x Forest -0.154 
(0.094) 

Post x Forest -0.029 
(0.042) 

Post x Treat x Forest 0.191 
(0.230) 

Treat x Grass -0.000 
(0.067) 

Post x Grass 0.012 
(0.029) 

Post x Treat x Grass 0.124 
(0.087) 

Adjusted R2 0.655 0.651 0.651 
Observations 15,034 15,939 15,372 

Note: The estimates are based on equation 1. The sample includes houses located within 
two-Euclidean miles from the nearest solar farm. The treatment and control groups are 
defined based on street network measure. The dependent variable is the natural log of sales 
price for houses sold between 1997 and 2017. Column (1) drops sales around solar farms 
larger than 5 MW capacity; Column (2) incorporates interaction terms between a binary 
indicator Coop (that equals one if a house is located around solar farms that sell power to 
either electric co-ops or municipality owned electric utilities) and post, treat, and post x treat 
variables; Column (3) includes land characteristics of parcels before the construction of the 
solar farm (forest and grassland indicators). All specifications include county-by-year fixed 
effects and solar farm fixed effects. All models include house, neighborhood, and location 
characteristics. Finally, robust standard errors clustered by solar farm are in parentheses 
where *** p<0.01, ** p<0.05, * p<0.l. 
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Table 8: Housing Market Activity: The effect of solar farm construction on sales counts 

(1) (2) (3) (4) I 

Treat ( < 1 mile) -2.688*** -2.693*** -2.690*** -2.690*** 
(0.013) (0.015) {0.014) (0.014) 

Post 0.001 -0.002 -0.000 -0.000 
(0.002) (0.002) (0.002) (0.003) 

Post X Treat -0.058*** -0.055*** -0.057*** -0.057*** 
(0.014) (0.015) (0.014) (0.014) 

Adjusted R2 0.996 0.996 0.996 0.997 
Observations 15,939 15,939 15,939 15,939 
Year fixed effects Yes Yes Yes 
Solar Farm characteristics Yes 
Solar Farm fixed effects Yes Yes 
County fixed effects Yes 
County by Year fixed effects Yes 

Note: The sample includes houses located within two-Euclidean miles from the nearest solar 
farm. The treatment and control groups are defined based on street network measure. The 
dependent variable is the natural log of sales count aggregated by solar farm by year of sale 
by treatment status. AH models include house, neighborhood, and location characteristics. 
Finally, robust standard errors clustered by solar farm are in parentheses where *** p<0.01, 
** p<0.05, * p<O.l. 
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Figure 1. Price function estimates pre- and post- solar farm construction 
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Note: The sample includes houses located within two-Euclidean miles from the nearest solar 
farm. The figure is restricted to sales within 2.5 miles of the solar farm based on street 
network distance measure. The figure includes 90 percent confidence intervals. 
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Figure 2. Price function estimates relative to solar farm construction date 
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Note: The sample includes houses located within two-Euclidean miles from the nearest solar 
farm. Treatment and control groups are defined based on street network distance measure. 
The figure includes 90 percent confidence intervals. 
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Figure 3. Event study: the effect of solar farm construction on housing values 
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Note: The sample includes houses located within two-Euclidean miles from the nearest 
solar farm. Treatment and control groups are defined based on the street network distance 
measure. The point estimates for the average treatment effect are provided along with 90 
percent confidence intervals.· 
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Table Al: Euclidean Distance: The effect of solar farm construction on house values. 

Treated ( 0.5 miles) Treated ((0.5; 1 ) miles) Treated ( 1 miles) 
(l} (2} (3) (4) (5) (6) (7) (8) (9) (10) (11) (12} 

Treat 0.002 0.015 0.013 0.005 -0.026 -0.028 -0.030 -0.026 -0.017 -0.020 -0.019 -0.019 
(0.025) (0.022) (0.021) (0.022) (0.029) (0.023) (0.024) (0.024) (0.024) (0.020) (0.020) (0.020) 

Post 0.116** 0.073 0.079* 0.041* 0.114** 0.068 0.073* 0.031 0.121** 0.067 0.074* 0.043 
(0.053) (0.045) (0.042) (0.021) (0.054) (0.048) (0.044) (0.021) (0.055) (0.046) (0.043) (0.026) 

Post X Treat -0.037 -0.042 -0.033 -0.022 0.013 0.017 0.017 0.015 -0.004 0.001 0.002 0.007 
(0.032} (0.030) (0.032) (0.030) (0.029) (0.028) (0.028) (0.026) (0.024) (0.023) {0.024) (0.023) 

Adjusted R2 0.592 0.641 0.622 0.661 0.579 0.630 0.613 0.651 0.580 0.630 0.613 0.634 
Number of observations 13,344 13,344 13,344 13,344 14,816 14,816 14,816 14,816 15,939 15,939 15,939 15,939 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Solar Farm characteristics Yes Yes Yes 
Solar Farm fixed effects Yes Yes Yes Yes Yes Yes 
County fixed effects Yes Yes Yes 
County by Year fixed effects Yes Yes Yes 

Note: The sample includes houses located within two-Euclidean miles from the nearest solar farm. The treatment and control 
groups are defined based on Euclidean distance measure. The dependent variable is the natural log of sales price for houses 
sold between 1997 and 2017. The sample includes 249 solar farms built between 2009 and 2017. A control group includes sales 
located beyond one-Euclidean mile of the solar farm. All models include house, neighborhood, and location characteristics. 
Finally, robust standard errors clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.l. 



Table A2: The effect of solar farm construction on house values (three-Euclidean miles). 

Treated ($ lmiles) 
(1) (2) (3) (4) 

Treat -0.028 0.000 0.002 -0.012 
(0.029) (0.029) (0.027) (0.031) 

Post 0.082 0.038 0.043 0.008 
(Q.054) (0.034) (0.032) (0.015) 

Post X Treat ·-0.110** -0.097** -0.115*** -0.064 
(0.047) (0.044) (0.044) (0.043) 

Adjusted R2 0.581 0.623 0.613 0.637 
Observations 32,413 32,413 32,413 32,413 
Year fixed effects Yes Yes Yes 
Solar Farm characteristics Yes 
Solar Farm fixed effects Yes Yes 
County fixed effects Yes 
County by Year fixed effects Yes 

Note: The sample includes houses located within three-Euclidean miles from the nearest 
solar farm. The treatment and control groups are defined based on street network measure. 
A control group includes houses located beyond 1 mile of the solar farm. The dependent 
variable is the natural log of sales price for houses sold between 1997 and 2017. All models 
include house, neighborhood, and location characteristics. Finally, robust standard errors 
clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0. l. 
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Table A3: Heterogeneity analysis by demographics. 

Education Race (white) Race (Hispanic) Income 
(1) (2) (3) (4) 

Post X Treat (~ lmile) -0.061 -0.074 -0.060 -0.060 
(0.057) (0.056) (0.070) (0.057) 

Post X Treat X (Above Median) -0.072 -0.028 -0.045 -0.065 
(0.080) (0.082) (0.086) (0.080) 

Adjusted R2 0.651 0.651 0.651 0.651 
Observations 15,939 15,939 15,939 15,939 

Note: The sample includes houses located within three-Euclidean miles from the nearest 
solar farm. The treatment and control groups are defined based on street network measure. 
A control group includes houses located beyond 1 mile of the solar farm. The dependent 
variable is the natural log of sales price for houses sold between 1997 and 2017. All models 
include house, neighborhood, and location characteristics. Finally, robust standard errors 
clustered by solar farm are in parentheses where *** p<0.01, ** p<0.05, * p<0.l. 
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